

November 2016

Data and Systems Challenges and Solutions: The Standardised Approach to Counterparty Credit Risk

Contact details:

Oscar McCarthy Avantage Reply The Atrium, Strawinskylaan 3051 1077 ZX Amsterdam, The Netherlands

phone: +31-20-301-2123 mobile: +31-6-1849-4874 e-mail: o.mccarthy@reply.eu

Introduction

- SA-CCR will replace both current non-internal models approaches, the Current Exposure Method (B1-3) and the Standardised Method (B2-3).
- Basel paper cites start date of 2017 although CRR2 will likely be 2019.
- Basel Committee objectives include:
 - Addresses known deficiencies of the CEM and the SM;
 - Develop a framework suitable to both margined and un-margined, as well as bilateral and cleared transactions;
 - Improves the risk sensitivity of the capital framework without creating undue complexity.
 - Capable of being implemented simply and easily;
- In this talk, we examine the practical aspects of implementation.
 - Hedging and Netting sets.
 - Contract, Collateral and Counterparty reference data.
 - Supervisory parameters.
 - Aspects of solution architecture.

SA-CCR Methodology Framework

- The exposures under the SA-CCR consist of two components: replacement cost (RC) and potential future exposure (PFE).
- Mathematically, EAD = alpha * (RC + PFE)
- The methodology is based on concept of a "hedging set", a set of comparable transactions within a single netting set.

Interest Rates	FX	Credit	Equity	Commodity
CCYMaturity	CCY Pair	• Single set.	• Single set.	EnergyMetals,
• Full offset possible	 Full offset possible per pair. 	Full offset by reference name.	Full offset by reference name.	 Agricultural, Other.
within MbucketPartial offsetotherwise.		Partial offset elsewhere.	 Partial offset elsewhere. 	 Full offset permitted by commodity. Partial offset
				within set.

Implementation Issues:

- How to map individual trades correctly within this setup?
 Substantial amounts of trade data required to facilitate this.
- What hedging set is used for multi-factor products, e.g. quantos?
 Pre-determined selection rules required for all applicable products.

Collateral and Contract Management

SA-CCR framework updated to align with the contemporary world of collateral management.

 $RC = max\{ V-C; TH + MTA - NICA; 0 \}$

Where:

- *V* is trade value, and *C* is collateral already received.
- *TH* + *MTA NICA* represents the largest exposure that would not trigger a margin call and it contains levels of collateral that need always to be maintained.

Excess collateral also recognised via PFE reduction:

$$multiplier = \min\left\{1; Floor + (1 - Floor) * \exp\left(\frac{V - C}{2 * (1 - Floor) * AddOn^{aggregate}}\right)\right\}$$

This allows for a reduction of up to 95% of PFE.

Add-ons also modified by Maturity (un-margined trades) Margin Period of Risk (margined).

- 10 day MPOR for daily margined OTC trades, 5 days for CCPs.
- 20 days for OTC trades with >5,000 trades.
- Doubles in the presence of a margin dispute.

Implementation Issues:

- Identify contract reference data, e.g. MTA and TH amounts.
- Sourcing up-to-date collateral values.
- How many trades? not easy in a fragmented system setup.
- Where are collateral disputes booked?
- Seamlessly integrate at the correct netting set / legal agreement level

Supervisory Parameters

δ_i	Bought	Sold	
Call Options ¹³	$+\Phi\left(\frac{\ln(P_i/K_i)+0.5*\sigma_i^2*T_i}{\sigma_i^*\sqrt{T_i}}\right)$	$-\Phi\left(\frac{\ln(P_i/K_i)+0.5*\sigma_i^2*T_i}{\sigma_i^*\sqrt{T_i}}\right)$	
Put Options ⁷	$-\Phi\left(-\frac{\ln(P_i/K_i)+0.5*\sigma_i^2*T_i}{\sigma_i*\sqrt{T_i}}\right)$	$+\Phi\left(-\frac{\ln(P_i/K_i)+0.5*\sigma_i^2*T_i}{\sigma_i*\sqrt{T_i}}\right)$	

Supervisory delta does not work in the presence of negative rates!

- Absent supervisory guidance, Banks will need to make workaround assumptions;
- E.g. set Spot = Epsilon for trades with positive strikes and –Epsilon for negative strikes.

• Supervisory delta not designed for negative rates.

SA-CCR Solution Architecture

The Past

- Basel I was a GL implemented system.
- Credit risk exposure reporting still traditionally a finance led operation.
- CEM (just about) implementable by sourcing sub-ledger data to credit warehouse.

- Many data required: trade, market, collateral, contract.
- Also requires multiple system interfaces.

Conclusions

The traditional three-way challenge of implementation applies as equally to this as it does to other risk projects:

- Policy
- Specifically, the need to make firm specific decisions about e.g. mappings and supervisory deltas.
- Document decisions and ensure correct approvals \rightarrow Steering Committee not always the correct place.
- Methodology
- Implementation of the myriad formulae will test the robustness of the data structure: easier with fewer systems.
- Ensure flexible implementation to reduce complexity of scaleability.
- Infrastructure
- The more fragmented the starting point, the harder the road to the destination.

